Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 157
1.
Article En | MEDLINE | ID: mdl-38240783

This study explored the potential of poly-(lactic-co-glycolic) acid (PLGA) nanoparticles to enhance the effectiveness of anticancer treatments through combination therapy with phytol and α-bisabolol. The encapsulation efficiency of the nanoparticles was investigated, highlighting the role of ionic interactions between the drugs and the polymer. Characterization of PLGA-Phy+Bis nanoparticles was carried out using DLS with zeta potential and HR-TEM for size determination. Spectrophotometric measurements evaluated the encapsulation efficiency, loading efficiency, and in vitro drug release. FTIR analysis assessed the chemical interactions between PLGA and the drug actives, ensuring nanoparticle stability. GC-MS was employed to analyze the chemical composition of drug-loaded PLGA nanocarriers. Cytotoxicity was evaluated via the MTT assay, while Annexin V-FITC/PI staining and western blot analysis confirmed apoptotic cell death. Additionally, toxicity tests were performed on L-132 cells and in vivo zebrafish embryos. The study demonstrates high encapsulation efficiency of PLGA-Phy+Bis nanoparticles, which exhibit monodispersity and sizes of 189.3±5nm (DLS) and 268±54 nm (HR-TEM). Spectrophotometric analysis confirmed efficient drug encapsulation and release control. FTIR analysis revealed nanoparticle structural stability without chemical interactions. MTT assay results demonstrated the promising anticancer potential of all the three nanoparticle types (PLGA-Phy, PLGA-Bis, and PLGA-Phy+Bis) against lung cancer cells. Apoptosis was confirmed through Annexin V-FITC/PI staining and western blot analysis, which also revealed changes in Bax and Bcl-2 protein expression. Furthermore, the nanoparticles exhibited non-toxicity in L-132 cells and zebrafish embryo toxicity tests. PLGA-Phy+Bis nanoparticles exhibited efficient encapsulation, controlled release, and low toxicity. Apoptosis induction in A549 cells and non-toxicity in healthy cells highlight their clinical potential.

2.
PLoS One ; 18(12): e0295922, 2023.
Article En | MEDLINE | ID: mdl-38153954

Candidal infections, particularly vulvovaginal candidiasis (VVC), necessitate effective therapeutic interventions in clinical settings owing to their intricate clinical nature and elusive understanding of their etiological mechanisms. Given the challenges in developing effective antifungal therapies, the strategy of repurposing existing pharmaceuticals has emerged as a promising approach to combat drug-resistant fungi. In this regard, the current study investigates molecular insights on the anti-candidal efficacy of a well-proven anticancer small molecule -3-bromopyruvate (3BP) against three clinically significant VVC causing Candida species viz., C. albicans, C. tropicalis and C. glabrata. Furthermore, the study validates 3BP's therapeutic application by developing it as a vaginal cream for the treatment of VVC. 3BP exhibited phenomenal antifungal efficacy (killing >99%) with minimum inhibitory concentrations (MIC) and minimum fungicidal concentrations (MFC) of 256 µg/mL against all tested Candida spp. Time killing kinetics experiment revealed 20 min as the minimum time required for 3BP at 2XMIC to achieve complete-killing (99.9%) in all Candida strains. Moreover, the ergosterol or sorbitol experiment explicated that the antifungal activity of 3BP does not stem from targeting the cell wall or the membrane component ergosterol. Instead, 3BP was observed to instigate a sequence of pre-apoptotic cascade events, such as phosphatidylserine (PS) externalization, nuclear condensation and ROS accumulations, as evidenced by PI, DAPI and DCFH-DA staining methods. Furthermore, 3BP demonstrated a remarkable efficacy in eradicating mature biofilms of Candida spp., achieving a maximum eradication level of 90%. Toxicity/safety profiling in both in vitro erythrocyte lysis and in vivo Galleria mellonella survival assay authenticated the non-toxic nature of 3BP up to 512 µg/mL. Finally, a vaginal cream formulated with 3BP was found to be effective in VVC-induced female mice model, as it significantly decreasing fungal load and protecting vaginal mucosa. Concomitantly, the present study serves as a clear demonstration of antifungal mechanistic action of anticancer drug -3BP, against Candida species. This finding holds significant potential for mitigating candidal infections, particularly VVC, within healthcare environments.


Candidiasis, Vulvovaginal , Candidiasis , Female , Mice , Humans , Animals , Candidiasis, Vulvovaginal/drug therapy , Candidiasis, Vulvovaginal/prevention & control , Candidiasis, Vulvovaginal/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Reactive Oxygen Species/pharmacology , Vaginal Creams, Foams, and Jellies/pharmacology , Candida , Candidiasis/drug therapy , Candidiasis/prevention & control , Candida glabrata , Candida tropicalis , Ergosterol/pharmacology , Candida albicans , Microbial Sensitivity Tests
3.
J Biomol Struct Dyn ; : 1-16, 2023 Nov 22.
Article En | MEDLINE | ID: mdl-37993988

Globally, dental caries is a prevalent oral disease caused by cariogenic bacteria, primarily Streptococcus mutans. It establishes caries either through sucrose-dependent (via glycosyltransferases) or through sucrose-independent (via surface adhesins Antigen I/II) mechanism. Sortase A (srtA) attaches virulence-associated adhesins to host tissues. Because of their importance in the formation of caries, targeting these proteins is decisive in the development of new anticariogenic drugs. High-throughput virtual screening with LIPID MAPS -a fatty acid database was performed. The selected protein-ligand complexes were subjected to molecular dynamics simulation (MDs). The Binding Free Energy of complexes was predicted using MM/PBSA. Further, the drug-likeness and pharmacokinetic properties of ligands were also analyzed. Out of 46,200 FAs scrutinized virtually against the three protein targets (viz., GtfC, Ag I/II and srtA), top 5 FAs for each protein were identified as the best hit based on interaction energies viz., hydrogen bond numbers and hydrophobic interaction. Further, two common FAs (LMFA01050418 and LMFA01040045) that showed high binding affinity against Ag I/II and srtA were selected for MDs analysis. A 100ns MDs unveiled a stable conformation. Results of Rg signified that FAs does not induce significant structural & conformational changes. SASA indicated that the complexes maintain higher thermodynamic stability during MDs. The predicted binding free energy (MM/PBSA) of complexes elucidated their stable binding interaction. ADME analysis suggested the FAs are biologically feasible as therapeutic candidates. Overall, the presented in silico data is the first of its kind in delineating FAs as promising anticaries agents of future.Communicated by Ramaswamy H. Sarma.

4.
Sci Rep ; 13(1): 19033, 2023 11 03.
Article En | MEDLINE | ID: mdl-37923820

The present study explores the avenue of phage therapy as an alternative antimicrobial therapeutic approach to counter multidrug-resistant (MDR) Pseudomonas aeruginosa infection. Our study investigated two novel virulent phages PSPa and APPa, specific to P. aeruginosa, in which in vitro evaluations were carried out to assess the therapeutic potential of phages. Both the identified phages exhibited host specificity by showing antagonistic activity of about 96.43% (27/28) and 92.85% (26/28) towards the 28 MDR clinical isolates of P. aeruginosa. The PSPa phage was found to have linear dsDNA with a sequence length of 66,368 bp and 92 ORFs, of which 32 were encoded for known functions of the phage life cycle and the remaining 60 were hypothetical functions. The APPa phage was found to have linear dsDNA with 59,591 bp of genome length and 79 ORFs, of which 15 were found to have known phage functions and the remaining 64 were found to be hypothetical proteins. Notably, the genome of both the phages lacks genes coding for tRNA, rRNA, and tmRNA. The phylogenetic analysis revealed that PSPa and APPa share > 95% sequence similarity with previously sequenced Pseudomonas viruses of their respective families. Further, the in vivo efficacy evaluation using the zebrafish model revealed that the treatment with PSPa and APPa has remarkably improved the survival rate of bacterial-infected zebrafish, reinforcing the anti-infective potential of the isolated phages PSPa and APPa against P. aeruginosa infection.


Bacteriophages , Pseudomonas Phages , Humans , Animals , Pseudomonas aeruginosa/genetics , Zebrafish , Virulence , Phylogeny , Plankton
5.
Ecotoxicol Environ Saf ; 264: 115433, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37696079

Thermal-discharges from power plants highly disturb the biological communities of the receiving water body and understanding their influence is critical, given the relevance to global warming. We employed 16 S rRNA gene sequencing to examine the response of two dominant marine bacterial lifestyles (planktonic and biofilm) against elevated seawater temperature (+5 â„ƒ). Obtained results demonstrated that warming prompted high heterogeneity in diversity and composition of planktonic and biofilm microbiota, albeit both communities responded contrastingly. Alpha diversity revealed that temperature exhibited positive effect on biofilm microbiota and negative effect on planktonic microbiota. The community composition of planktonic microbiota shifted significantly in warming area, with decreased abundances of Bacteroidetes, Cyanobacteria, and Actinobacteria. Contrastingly, these bacterial groups exhibited opposite trend in biofilm microbiota. Co-occurrence networks of biofilm microbiota displayed higher node diversity and co-presence in warming area. The study concludes that with increasing ocean warming, marine biofilms and biofouling management strategies will be more challenging.


Biofouling , Microbiota , Plankton/genetics , Biofilms , Microbiota/genetics , Bacteria/genetics , Seawater/microbiology
6.
J Appl Microbiol ; 134(7)2023 Jul 04.
Article En | MEDLINE | ID: mdl-37422440

AIM: Staphylococcus aureus causes several complicated infections. Despite decades of research on developing new antimicrobials, methicillin-resistant S. aureus (MRSA) remains a global health problem. Hence, there is a dire need to identify potent natural antibacterial compounds as an alternative to antimicrobials. In this light, the present work divulges the antibacterial efficacy and the action mechanism of 2-hydroxy-4-methoxybenzaldehyde (HMB) isolated from Hemidesmus indicus against S. aureus. METHODS AND RESULTS: Antimicrobial activity of HMB was assessed. HMB exhibited 1024 µg ml-1 as the minimum inhibitory concentration (MIC) and 2 × MIC as the minimum bactericidal concentration against S. aureus. The results were validated by spot assay, time kill, and growth curve analysis. In addition, HMB treatment increased the release of intracellular proteins and nucleic acid contents from MRSA. Additional experiments assessing the structural morphology of bacterial cells using SEM analysis, ß-galactosidase enzyme activity, and the fluorescence intensities of propidium iodide and rhodamine123 dye divulged that the cell membrane as one of the targets of HMB to hinder S. aureus growth. Moreover, the mature biofilm eradication assay revealed that HMB dislodged nearly 80% of the preformed biofilms of MRSA at the tested concentrations. Further, HMB treatment was found to sensitize MRSA cells upon combining tetracycline treatment. CONCLUSIONS: The present study suggests that HMB is a promising compound with antibacterial and antibiofilm activities and could act as a lead structure for developing new antibacterial drugs against MRSA.


Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Benzaldehydes/pharmacology , Staphylococcal Infections/microbiology , Microbial Sensitivity Tests , Biofilms
7.
Sci Rep ; 13(1): 11687, 2023 07 19.
Article En | MEDLINE | ID: mdl-37468600

Candida albicans, a common fungus of human flora, can become an opportunistic pathogen and causes invasive candidiasis in immunocompromised individuals. Biofilm formation is the prime cause of antibiotic resistance during C. albicans infections and treating biofilm-forming cells is challenging due to their intractable and persistent nature. The study intends to explore the therapeutic potential of naturally produced compounds by competitive marine bacteria residing in marine biofilms against C. albicans biofilm. To this end, 3-hydroxy coumarin (3HC), a compound identified from the cell-free culture supernatant of the marine bacterium Brevundimonas abyssalis, was found to exhibit anti-biofilm and anti-hyphal activity against both reference and clinical isolates of C. albicans. The compound demonstrated significant inhibitory effects on biofilms and impaired the yeast-to-hyphal transition, wrinkle, and filament morphology at the minimal biofilm inhibitory concentration (MBIC) of 250 µg mL-1. Intriguingly, quantitative PCR analysis of 3HC-treated C. albicans biofilm revealed significant downregulation of virulence genes (hst7, ume6, efg1, cph1, ras1, als1) associated with adhesion and morphogenesis. Moreover, 3HC displayed non-fungicidal and non-toxic characteristics against human erythrocytes and buccal cells. In conclusion, this study showed that marine biofilms are a hidden source of diverse therapeutic drugs, and 3HC could be a potent drug to treat C. albicans infections.


Candida albicans , Fungal Proteins , Humans , Fungal Proteins/metabolism , Mouth Mucosa/metabolism , Biofilms , Gene Expression Regulation, Fungal , Hyphae , Morphogenesis , Coumarins/pharmacology , Antifungal Agents/pharmacology
8.
Antibiotics (Basel) ; 12(3)2023 Mar 09.
Article En | MEDLINE | ID: mdl-36978412

The anti-biofilm and anti-virulence potential of the essential oil (E.O.) extracted from Hedychium larsenii M. Dan & Sathish was determined against Streptococcus pyogenes. A crystal violet assay was employed to quantify the biofilm. Linalool, a monoterpene alcohol from the E.O., showed concentration-dependent biofilm inhibition, with a maximum of 91% at a concentration of 0.004% (v/v). The AlamarBlueTM assay also confirmed Linalool's non-bactericidal anti-biofilm efficacy (0.004%). Linalool treatment impeded micro-colony formation, mature biofilm architecture, surface coverage, and biofilm thickness and impaired cell surface hydrophobicity and EPS production. Cysteine protease synthesis was quantified using the Azocasein assay, and Linalool treatment augmented its production. This suggests that Linalool destabilizes the biofilm matrix. It altered the expression of core regulons covRS, mga, srv, and ropB, and genes associated with virulence and biofilm formation, such as speB, dltA, slo, hasA, and ciaH, as revealed by qPCR analysis. Cytotoxicity analysis using human kidney cells (HEK) and the histopathological analysis in Danio rerio proved Linalool to be a druggable molecule against the biofilms formed by S. pyogenes. This is the first report on Linalool's anti-biofilm and anti-virulence potential against S. pyogenes.

9.
Arch Microbiol ; 204(9): 590, 2022 Sep 02.
Article En | MEDLINE | ID: mdl-36053368

Globally, new classes of synthetic and natural antibiotics and antivirulents have continuously been validated for their potential broad-spectrum antagonistic activity with the aim of identifying an effective active molecule to prevent the spread of infectious agents in both food industry and medical field. In view of this, present study is aimed at evaluating the rapid killing efficacy of bioactive molecules Carvacrol (C) and Nerol (N) through British Standard European Norm 1276: phase2/step1 (EN1276) protocol. Active molecules C and N showed broad-spectrum antimicrobial activity against the test strains Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Enterococcus hirae at concentration range of 78.125, 625, 156.25 and 312.5 µg/mL, respectively, for C, and 625 µg/mL for N. Whereas, combinatorial approach showed efficient activity with four times reduced concentration of C and N at 78.125 and 156.25 µg/mL, respectively, against test strains. Further, EN1276 results proved the rapid killing efficacy of test strains in 1 min of contact time with significant (> 5 log) growth reduction at 100X concentration of actives. SEM analysis and reduced concentration of protease, lipids and carbohydrate contents of treated group biofilm components ascertained preformed biofilm disruption potential of C + N on polystyrene and nail surfaces. C + N at synergistic concentration exhibited no adverse effect on HaCaT cells at 78.125 µg/mL (C) + 156.25 µg/mL (N). Taken together, based on the observed experimental results, present study evidence the antiseptic/disinfectant ability of C + N and suggest that the combination can preferentially be used in foam-based hand wash formulations.


Anti-Infective Agents, Local , Cross Infection , Acyclic Monoterpenes , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents, Local/pharmacology , Cross Infection/prevention & control , Cymenes , Escherichia coli , Humans , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Staphylococcus aureus
10.
Med Mycol ; 60(8)2022 Aug 10.
Article En | MEDLINE | ID: mdl-35661216

Oral candidiasis, the most common mycotic infection of the human oral cavity is non-life-threatening yet, if untreated, may advance as systemic infections. The ability of Candida albicans to adapt sessile lifestyle imparts resistance to drugs and host immunity. Consequently, due to the limited effectiveness of conventional antifungal treatment, novel therapeutic strategies are required. In the present study, synergistic interaction of phytochemicals, piperine, and cinnamaldehyde against the biofilm and hyphal of C. albicans was evaluated. Minimum inhibitory concentration (MIC) and biofilm inhibitory concentration (BIC) of piperine and cinnamaldehyde against C. albicans were analyzed through microbroth dilution assay and crystal violet staining method, respectively. Combinatorial biofilm and hyphal inhibitory effect were investigated through checkerboard assay. In vitro results were validated through gene expression analysis. BIC of piperine and cinnamaldehyde was determined to be 32 µg/ml and 64 µg/ml, respectively. Interaction between these two phytocomponents was found to be synergistic and six different synergistic antibiofilm combinations were identified. Microscopic analysis of biofilm architecture also evidenced the biofilm and surface adherence inhibitory potential of piperine and cinnamaldehyde combinations. Phenotypic switching between yeast and hyphal morphological forms was influenced by synergistic combinations. qPCR analysis corroborated the results of in vitro activities. nrg1 and trp1, the negative transcriptional regulators of filamentous growth were upregulated whereas other genes that are involved in biofilm formation, filamentous growth, adhesion, etc. were found to be downregulated. These proficient phytochemical combinations provide a new therapeutic avenue for the treatment of biofilm-associated oral candidiasis and to combat the recurrent infections due to antibiotic resistance.


Candida albicans , Candidiasis, Oral , Acrolein/analogs & derivatives , Alkaloids , Animals , Antifungal Agents/pharmacology , Benzodioxoles , Biofilms , Candidiasis, Oral/veterinary , Humans , Microbial Sensitivity Tests/veterinary , Piperidines , Polyunsaturated Alkamides
11.
Front Microbiol ; 13: 757418, 2022.
Article En | MEDLINE | ID: mdl-35602049

Since the rapid spread of coronavirus disease (COVID-19) became a global pandemic, healthcare ministries around the world have recommended specific control methods such as quarantining infected peoples, identifying infections, wearing mask, and practicing hand hygiene. Since no effective treatment for COVID-19 has yet been discovered, a variety of drugs approved by Food and Drug Administration (FDA) have been suggested for repurposing strategy. In the current study, we predicted that doxycycline could interact with the nucleotide triphosphate (NTP) entry channel, and is therefore expected to hinder the viral replication of SARS-CoV-2 RNA-dependent RNA-polymerase (RdRp) through docking analysis. Further, the molecular dynamics results revealed that the RdRp-Doxycycline complex was structurally relatively stable during the dynamic period (100 ns), and its complex maintained close contact with their active catalytic domains of SARS-CoV-2 RdRp. The molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculation of binding free energy also showed that the doxycycline has worthy affinities with SARS-CoV-2 RdRp. As expected, doxycycline effectively inhibited the viral replication of IHU strains of SARS-CoV-2 (IHUMI-3 and IHUMI-6), identified from the hospitalized patients in IHU Méditerranée Infection (IHUMI), Marseille, France. Moreover, doxycycline inhibited the viral load in vitro at both on-entry and after viral entry of IHU variants of SARS-CoV-2. The results suggest that doxycycline exhibits strains-dependant antiviral activity against COVID-19. As a result, the current study concludes that doxycycline may be more effective in combination with other drugs for better COVID-19 treatment efficacy.

12.
Arch Microbiol ; 204(5): 243, 2022 Apr 05.
Article En | MEDLINE | ID: mdl-35381886

Biofilm formation is a major issue in healthcare settings as 75% of nosocomial infection arises due to biofilm residing bacteria. Exopolysaccharides (EPS), a key component of the biofilm matrix, contribute to the persistence of cells in a complex milieu and defends greatly from exogenous stress and demolition. It has been shown to be vital for biofilm scaffold and pathogenic features. The present study was aimed to investigate the effectiveness of four domain-containing α-amylase from Streptomyces griseus (SGAmy) in disrupting the EPS of multidrug-resistant bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. In vitro analysis of preformed biofilm unveiled the antibiofilm efficacy of SGAmy against MRSA (85%, p < 0.05) and P. aeruginosa (82%, p < 0.05). The total carbohydrate content in the EPS matrix of MRSA and P. aeruginosa was significantly reduced to 71.75% (p < 0.01) and 74.09% (p < 0.01), respectively. The findings inferred from in vitro analysis were further corroborated through in vivo studies using an experimental model organism, Danio rerio. Remarkably, the survival rate was extended to 88.8% (p < 0.05) and 74.2% (p < 0.05) in MRSA and P. aeruginosa infected fishes, respectively. An examination of gills, kidneys, and intestines of D. rerio organs depicted the reduced level of microbial colonization in SGAmy-treated cohorts and these findings were congruent with bacterial enumeration results.


Methicillin-Resistant Staphylococcus aureus , Streptomyces griseus , Animals , Anti-Bacterial Agents/pharmacology , Bacteria , Biofilms , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Zebrafish , alpha-Amylases
13.
Front Biosci (Landmark Ed) ; 27(3): 87, 2022 03 08.
Article En | MEDLINE | ID: mdl-35345319

INTRODUCTION: Chronic obstructive pulmonary disease (COPD) is an inflammatory disease caused by increasing breathing passage obstruction which completely disrupts human homeostasis. Some patients require lung transplantation or long-term oxygen therapy. COPD is one of the noxious diseases and its fourth leading cause of death around the globe. There is an immediate need for potential drug development to tackle this serious disease. Folk medicines are used to combat complex diseases that have shown effectiveness in the treatment of breathing diseases. Vitex negundo L. is an ethnobotanically important medicinal plant used for various ailments and modulates human cellular events. This shrub has diverse specialized metabolites and is being used as complementary medicine in various countries. Though systems-level understanding is there on the mode of action, the multi-target treatment strategy for COPD is still a bottleneck. METHODS: In this investigation, systems pharmacology, cheminformatics, and molecular docking analyses were performed to unravel the multi-targeted mechanisms of V. negundo L. potential bioactives to combat COPD. RESULTS: Cheminformatics analysis combined with the target mining process identified 86 specialized metabolites and their corresponding 1300 direct human receptors, which were further imputed and validated systematically. Furthermore, molecular docking approaches were employed to evaluate the potential activity of identified potential compounds. In addition, pharmacological features of these bioactives were compared with available COPD drugs to recognize potential compounds that were found to be more efficacious with higher bioactive scores. CONCLUSIONS: The present study unravels the druggable targets and identifies the bioactive compounds present in V. negundo L., that may be utilized for potential treatment against COPD. However, further in vivo analyses and clinical trials of these molecules are essential to deciphering their efficacy.


Pulmonary Disease, Chronic Obstructive , Vitex , Humans , Molecular Docking Simulation , Network Pharmacology , Plant Extracts/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Pulmonary Disease, Chronic Obstructive/drug therapy , Vitex/metabolism
14.
Mar Genomics ; 62: 100890, 2022 Apr.
Article En | MEDLINE | ID: mdl-35246302

H. boliviensis strain kknpp38 is a dense exopolysaccharide (EPS) producing bacterium, isolated from the early-stage (72-h-old) of marine biofilm. Laboratory experiments demonstrated that this isolate forms a potent biofilm on various artificial substrata viz. polystyrene, stainless steel as well as titanium and possesses high tolerance to chlorine disinfection. To determine the genes and biosynthetic pathways involved in the EPS production, whole-genome sequencing was performed using high-throughput Illumina tag sequencing. The high-quality reads were first de novo assembled using Unicycler genome assembler (version 0.4.9b) and then annotated using Prokka (version 1.13). The complete genome comes from one circular chromosome containing 4.96 Mbp DNA with G + C content of 55%, and encompasses genes encoding 4476 proteins, 2 rRNAs, and 57 tRNAs. Intriguingly, genomic analysis revealed the existence of genes involved in ATP-binding cassette (ABC) transporter-dependent EPS biosynthesis pathways (ugd, ugd2, galU). In addition, we identified genes involved in ectoine (ectA, ectB, ectC, ectD) and polyhydroxyalkanoates (PHAs; fabA, fabB, fabD, fabF, fabH, fabV, fabZ, phaC, phaD, phaG, phaR, phaZ1) production, which are known to involve in bacterial adaptation in saline environment. The outcomes of this study expand scientific understanding on the genes and pathways involved in EPS biosynthesis by marine bacteria.


Chlorine , Halomonas , Biofilms , Chlorine/metabolism , Genes, Bacterial , Genome, Bacterial , Halomonas/genetics
15.
Water Res ; 212: 118081, 2022 Apr 01.
Article En | MEDLINE | ID: mdl-35077939

With a growing consciousness of the importance of nature stewardship, researchers are focusing their efforts on utilizing renewable energy, particularly solar energy, to address environmental concerns. In this context, photocatalysis has long been viewed as one of the most promising cleaning methods. Hence, we have prepared a sunlight-active phytol-assisted ZnO-TiO2 nanocomposite (PZTN) for photocatalytic bacterial deactivation and dye degradation process. The PZTN-photocatalysis effectively deactivated the bacterial pathogens as well as malachite green dye within 240 min under direct-sunlight. Moreover, this will be the first complete study on safety level assessment of photocatalytically-remediated water through toxicity studies. The obtained results evidenced that photocatalytically-deactivated bacteria and MG-dye showed to have no toxic effects, signifying that the PZTN-photocatalyzed water seems to be extremely safe for the environment. As a result of this research, we suggest that the PZTN could be a promising sunlight-active photocatalyst for environmental water treatment. On the other hand, biofouling is a ubiquitous phenomenon in the marine environment. Bacteria are the first organisms to foul surfaces and produce biofilms on man-made submerged materials. Interestingly, PZTN-coated PVC plastic-films effectively disallowed biofilms on their surface. This part of this research suggests that PZTN coated PVC-plastics are the best alternative for biofouling management.


Nanocomposites , Zinc Oxide , Aquaculture , Bacteria , Catalysis , Humans , Phytol , Sunlight , Titanium
16.
Mol Biotechnol ; 64(5): 575-589, 2022 May.
Article En | MEDLINE | ID: mdl-35018617

The present study was aimed to investigate the effect of docosanol on the protein expression profile of methicillin-resistant Staphylococcus aureus (MRSA). Thus, two-dimensional gel electrophoresis coupled with MALDI-TOF MS technique was utilized to identify the differentially regulated proteins in the presence of docosanol. A total of 947 protein spots were identified from the intracellular proteome of both control and docosanol treated samples among which 40 spots were differentially regulated with a fold change greater than 1.0. Prominently, the thiol-dependent antioxidant system and stress response proteins are downregulated in MRSA, which are critical for survival during oxidative stress. In particular, docosanol downregulated the expression of Tpx, AhpC, BshC, BrxA, and YceI with a fold change of 1.4 (p = 0.02), 1.4 (p = 0.01), 1.6 (p = 0.002), 4.9 (p = 0.02), and 1.4 (p = 0.02), respectively. In addition, docosanol reduced the expression of proteins involved in purine metabolic pathways, biofilm growth cycle, and virulence factor production. Altogether, these findings suggest that docosanol could efficiently target the antioxidant pathway by reducing the expression of bacillithiol and stress-associated proteins.


Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Antioxidants/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Fatty Alcohols , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Proteome/genetics , Proteome/metabolism , Sulfhydryl Compounds/metabolism
17.
Curr Microbiol ; 79(2): 60, 2022 Jan 04.
Article En | MEDLINE | ID: mdl-34982232

The present study aims to carefully delineate the bacterial community composition in marine sediments from different geographical coastal regions of Palk Bay and Gulf of Mannar that are known for human recreational activities. Bacterial richness in different marine sediments was assessed using 16S rRNA gene-based Denaturing Gradient Gel Electrophoresis (DGGE) which is a widely deployed fingerprinting technique. The DGGE profiles revealed that the bacterial community profiles of sediment from different coastal regions were complex and dynamic. The most dominant phylum present in the marine sediment samples were Proteobacteria followed by Cyanobacteria, Bacteriodetes, Firmicutes, Acidobacteria, and Actinobacteria. Cosmopolitan presence of Thioalkalivibrio sp. was observed in all the marine sediments. Sequencing of the abundant band reveals the presence of Vibrio spp. in all the marine sediments. Comparative illumina data analysis revealed the presence of 51 different Vibrio species in which Vibrio alginolyticus holds the highest abundance (67.2%) followed by V. harveyi (13.5%). This is the one of the very few reports that compared the complex microbial community composition of the marine sediments of different geographical regions of unexplored coastal region. Further in-depth analysis needs to be taken to understand the presence of complex microbial compositions and their functions through high-throughput whole metagenome sequencing and metaproteomic approaches.


Bays , Geologic Sediments , Bacteria/genetics , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Humans , Phylogeny , RNA, Ribosomal, 16S/genetics
18.
Article En | MEDLINE | ID: mdl-36612353

The increased incidence of healthcare-related Candida infection has necessitated the use of effective disinfectants/antiseptics in healthcare settings as a preventive measure to decontaminate the hospital environment and stop the persistent colonization of the offending pathogens. Quanternary ammonium surfactants (QASs), with their promising antimicrobial efficacy, are considered as intriguing and appealing candidates for disinfectants. From this perspective, the present study investigated the antifungal efficacy and action mechanism of the QAS cetyltrimethylammonium chloride (CTAC) against three clinically important Candida species: C. albicans, C. tropicalis, and C. glabrata. CTAC exhibited phenomenal antifungal activity against all tested Candida spp., with minimum inhibitory concentrations (MIC) and minimum fungicidal concentrations (MFC) between 2 and 8 µg/mL. The time−kill kinetics of CTAC (at 2XMIC) demonstrated that an exposure time of 2 h was required to kill 99.9% of the inoculums in all tested strains. An important observation was that CTAC treatment did not influence intracellular reactive oxygen species (ROS), signifying that its phenomenal anticandidal efficacy was not mediated via oxidative stress. In addition, sorbitol supplementation increased CTAC's MIC values against all tested Candida strains by three times (8−32 µg/mL), indicating that CTAC's possible antifungal activity involves fungus cell membrane destruction. Interestingly, the increased fluorescence intensity of CTAC-treated cells in both propidium iodide (PI) and DAPI staining assays indicated the impairment of cell plasma membrane and nuclear membrane integrity by CTAC, respectively. Additionally, CTAC at MIC and 2XMIC was sufficient (>80%) to disrupt the mature biofilms of all tested spp., and it inhibited the yeast-to-hyphae transition at sub-MIC in C. albicans. Finally, the non-hemolytic activity of CTAC (upto 32 µg/mL) in human blood cells and HBECs signified its non-toxic nature at the investigated concentrations. Furthermore, thymol and citral, two phytocompounds, together with CTAC, showed synergistic fungicidal effectiveness against C. albicans planktonic cells. Altogether, the data of the present study appreciably broaden our understanding of the antifungal action mechanism of CTAC and support its future translation as a potential disinfectant against Candida-associated healthcare infections.


Candida , Disinfectants , Humans , Candida/physiology , Antifungal Agents/pharmacology , Cetrimonium/pharmacology , Cell Membrane Permeability , Candida albicans , Disinfectants/pharmacology , Cell Death , Microbial Sensitivity Tests
19.
Biofouling ; 38(1): 55-70, 2022 01.
Article En | MEDLINE | ID: mdl-34961388

Implant-associated infections mediated by Acinetobacter baumannii biofilms have become a major concern in the healthcare sector. As biofilm formation by this important pathogen is mediated by quorum sensing, quorum sensing inhibitors (QSI) have gained much attention. The present study confirms that novel thiazolinyl-picolinamide based palladium(II) complexes had good biofilm disruptive and QSI properties against A. baumannii. Key QS-mediated virulence factors like pili mediated surface motility and polysaccharide production were inhibited by the best Pd(II) complex (E). This also showed potent inhibitory activity against both the standard and clinical strains of A. baumannii. Molecular docking analysis also proved the potent binding affinity of Pd(II)-E with the virulence targets. The Pd(II) complex also disrupted preformed biofilms and down-regulated the expression of QS mediated virulence genes in the biofilms established on implant material (titanium plates). As a whole, the present study showed that the novel thiazolinyl-picolinamide based Pd(II) complexes offer a promising anti-infective strategy to combat biofilm-mediated implant infections.


Acinetobacter baumannii , Quorum Sensing , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Biofilms , Molecular Docking Simulation , Palladium/pharmacology
20.
Front Cell Infect Microbiol ; 11: 781790, 2021.
Article En | MEDLINE | ID: mdl-34926324

Farnesol, a self-secreted quorum-sensing molecule (QSM) of Candida albicans, has been known to limit yeast-to-hyphal transition by blocking the RAS1-cAMP-PKA pathway. In a similar fashion, certain bacterial QSMs have also been reported to be successful in attenuating C. albicans biofilm and hyphal formation at relatively high cell density. This prompted us to investigate the antihyphal efficacy of certain bacterial QSMs through virtual docking against seminal drug targets, viz., CYCc and RAS1, that have been reported to be the hallmark players in C. albicans dimorphic virulence cascade. Against this backdrop, 64 QSMs belonging to five different bacterial QS signaling systems were subjected to initial virtual screening with farnesol as reference. Data of the virtual screening unveiled QSMs belonging to diketopiperazines (DKPs), i.e., 3-benzyl-6-isobutylidene-2,5-piperazinedione (QSSM 1157) and cyclo(l-Pro-l-Leu) (QSSM 1112), as potential inhibitors of CYCc and RAS1 with binding energies of -8.2 and -7.3 kcal mol-1, respectively. Further, the molecular dynamics simulations (for 50 ns) of CYCc-QSSM 1157 and RAS1-QSSM 1112 complexes revealed the mean ligand root mean square deviation (RMSD) values of 0.35 and 0.27 Å, respectively, which endorsed the rigid nature, less fluctuation in binding stiffness, and conformation of binding complexes. Furthermore, the identified two QSMs were found to be good in solubility, absorption, and permeation and less toxic in nature, as revealed by pharmacokinetics and toxicity analyses. In addition, the in vitro antihyphal assays using liquid and solid media, germ-tube experiment, and microscopic analysis strongly validated DKP-QSSM 1112 as a promising inhibitor of hyphal transition. Taken together, the present study unequivocally proves that DKPs can be used as potent inhibitors of C. albicans virulence dimorphism.


Candida albicans , Sex Characteristics , Farnesol/pharmacology , Quorum Sensing , Virulence
...